The Effect of the Hydraulic Retention Time on the Performance of an Ecological Wastewater Treatment System: An Anaerobic Filter with a Constructed Wetland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatment System Description
2.2. Treatment System Monitoring
2.2.1. Water Quality Analysis
2.2.2. Statistical Analyses
3. Results and Discussion
3.1. In-Situ Field Conditions
Parameter | HRT1 | HRT2 | HRT3 | |
---|---|---|---|---|
Temp. (°C) | 23.2 ± 1.9 | 21.7 ± 1.8 | 24.6 ± 1.4 | |
RH (%) | 49.8 ±10.5 | 50.3 ± 9.8 | 42.9 ± 9.4 | |
pH | M1 | 7.4 ± 0.2 | 7.1 ± 0.3 | 7.2 ± 0.2 |
M2 | 6.9 ± 0.2 | 7.1 ± 0.3 | 6.9 ± 0.2 | |
M3 | 7.2 ± 0.2 | 7.4 ± 0.2 | 7.2 ± 0.1 | |
M4 | 7.2 ± 0.3 | 7.4 ± 0.3 | 7.1 ± 0.1 |
3.2. Performance and Removal Efficiencies
Sampling Point | HRT1 | HRT2 | HRT3 | |||
---|---|---|---|---|---|---|
COD | BOD | COD | BOD | COD | BOD | |
M1 | 436.54 (72.42) | 261.50 (54.70) | 537.77 (68.81) | 243.84 (63.90) | 478.90 (62.68) | 279.58 (49.58) |
M2 | 98.76 (19.88) | 48.73 (14.10) | 167.80 (68.16) | 90.35 (40.31) | 217.58 (66.97) | 100.25 (33.92) |
M3 | 75.04 (21.65) | 28.25 (9.06) | 84.82 (21.21) | 52.03 (18.01) | 100.72 (16.35) | 47.25 (11.45) |
M4 | 66.86 (12.92) | 25.83 (7.47) | 76.88 (16.49) | 47.63 (18.85) | 86.25 (14.45) | 38.33 (9.20) |
Case Study | Anaerobic Treatment | Constructed Wetland (CW) | Global Efficiency | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 6 | 7 | 1 | 2 | 3 | 5 | 6 | 7 | 1 | 2 | 3 | 6 | 7 | |
Wastewater Treatment | UAF a | UAF | UASB b | TSUAR c | ABR d | UASB | HSSCW e | HSSCW | HSSCW | HSSCW | SFCW f | SFCW HSSCW | UAF HSSCW | ST g UAF HSSCW | UASB HSSCW | ABR SFCW HSSCW | UASB SFCW HSSCW |
BOD | 79.8 ± 9.0 | 56.6 ± 2.1 | 63.2 | 70 | – | 44.8 | 38.4 ± 35.8 | 50.6 ± 21.7 | 78 | 79–82 | – | 76.6 | 89.5 ± 4.4 | 78.1 | 92 | – | 87.1 |
COD | 76.1 ± 7.5 | 49.6 ± 2.6 | ≈61 | 80 | 30.3 ± 1.4 | 49.4 | 44.7 ± 29.5 | – | 78 | 78–82 | 78.1 ± 2.3 | 70.9 | 84.3 ± 4.0 | 81.1 | 91 | 81.2 ± 2.3 | 85.3 |
Ntot | 23.2 ± 10.7 | – | – | – | 31.3 ± 1.3 | – | 30.0 ± 8.0 | – | ≈24 | – | 83.4 ± 2.5 | – | 33.0 ± 17.7 | – | ≈27 | 82.3 ± 1.9 | – |
Ptot | 35.4 ± 15.5 | – | 35 | – | 34.4 ± 2.2 | – | 21 ± 9.9 | – | 38 | 15 | 61.2 ± 2.1 | – | 43.8 ± 12.3 | – | 60 | 67.2 ± 2.3 | – |
HRT (h) | 18 | <8 | 8 | 48 | 110 | 5.5–10 | 72 | <24 | 120 | 8.9–9.0 | 7 | – | – | – | – | – | – |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cui, L.; Zhu, X.; Ma, M.; Ouyang, Y.; Dong, M.; Zhu, W.; Luo, S. Phosphorus sorption capacities and physicochemical properties of nine substrate materials for constructed wetland. Arch. Environ. Contam. Toxicol. 2008, 55, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.H. Eutrophication. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Elsevier: Oxford, UK, 2009; Volume 3, pp. 61–73. [Google Scholar]
- Yates, C.R.; Prasher, S.O. Phosphorus reduction from agricultural runoff in a pilot-scale surface-flow constructed wetland. Ecol. Eng. 2009, 35, 1693–1701. [Google Scholar] [CrossRef]
- Akratos, C.S.; Tsihrintzis, V.A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetland. Ecol. Eng. 2007, 29, 173–191. [Google Scholar] [CrossRef]
- Puigagut, J.; Villaseñor, J.; Salas, J.J.; Bécares, E.; García, J. Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: A comparative study. Ecol. Eng. 2007, 30, 312–319. [Google Scholar] [CrossRef]
- Vymazal, J. Review: Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Langergraber, G. Modeling of processes in subsurface flow constructed wetlands: A review. Vadose Zone J. 2008, 7, 830–842. [Google Scholar] [CrossRef]
- Kadlec, R.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2009; pp. 3–10, 715–734. [Google Scholar]
- Matamoros, V.; Bayona, J.M. Behavior of emerging pollutants in constructed wetlands. Handb. Environ. Chem. 2008, 5, 199–217. [Google Scholar]
- Reed, C.; Crites, R.W.; Middlebrooks, E.J. Natural Systems for Waste Management and Treatment; Mc Graw Hill Co.: New York, NY, USA, 1995; pp. 173–178. [Google Scholar]
- U.S. EPA. Manual Constructed Wetlands Treatment of Municipal Wastewater; Office of Research and Development: Cincinnati, OH, USA, 2000.
- Wang, X.; Bai, X.; Qiu, J.; Wang, B. Municipal wastewater treatment with pond-CW system: A case study. Water Sci. Technol. 2005, 51, 325–329. [Google Scholar] [PubMed]
- Sim, C.; Yusoff, M.; Shutes, B.; Ho, S.; Mansor, M. Nutrient removal in a pilot and full scale constructed wetland, Putrajaya city, Malaysia. J. Environ. Manag. 2008, 88, 307–317. [Google Scholar] [CrossRef]
- Ye, F.; Li, Y. Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities. Ecol. Eng. 2009, 35, 1043–1050. [Google Scholar] [CrossRef]
- De la Varga, D.; Díaz, M.A.; Ruiz, I.; Soto, M. Avoiding clogging in constructed wetlands by using anaerobic digesters as pre-treatment. Ecol. Eng. 2013, 52, 262–269. [Google Scholar] [CrossRef]
- Knowles, P.R.; Griffin, P.; Davies, P.A. Complementary methods to investigate the development of clogging within a horizontal sub-surface flow tertiary treatment wetland. Water Res. 2010, 44, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef]
- Barros, P.; Ruiz, I.; Soto, M. Performance of an anaerobic digester-constructed wetland system for a small community. Ecol. Eng. 2008, 33, 142–149. [Google Scholar] [CrossRef]
- Ansola, G.; González, J.M.; Cortijo, R.; de Luis, E. Experimental and full-scale pilot plant constructed wetlands for municipal wastewater treatment. Ecol. Eng. 2003, 21, 43–52. [Google Scholar] [CrossRef]
- Álvarez, J.A.; Ruíz, I.; Soto, M. Anaerobic digesters as a pretreatment for constructed wetlands. Ecol. Eng. 2008, 33, 54–67. [Google Scholar] [CrossRef]
- Ruiz, I.; Díaz, M.A.; Crujeiras, B.; García, J.; Soto, M. Solids hydrolysis and accumulation in a hybrid anaerobic digester-constructed wetlands system. Ecol. Eng. 2010, 36, 1007–1016. [Google Scholar] [CrossRef]
- Morel, A.; Diener, S. Greywater Management in Low and Middle-Income Countries, Review of Different Treatment Systems for Households or Neighbourhoods; Swiss Federal Institute of Aquatic Science and Technology (Eawag): Dubendorf, Switzerland, 2006; pp. 27–30. [Google Scholar]
- Manariotis, I.; Grigoropoulos, S. Restart of anaerobic filters treating low-strength wastewater. Bioresour. Technol. 2008, 99, 3579–3589. [Google Scholar] [CrossRef] [PubMed]
- López-López, A.; Albarrán-Rivas, M.G.; Hernández-Mena, L.; León-Becerril, E. An assessment of an anaerobic filter packed with a low-cost material for treating domestic wastewater. Environ. Technol. 2013, 34, 1151–1159. [Google Scholar] [CrossRef]
- Trang, N.; Konnerup, D.; Schierup, H.; Chiem, N.; Tuan, L.; Brix, H. Kinetics of pollutant removal from domestic wastewater in a tropical horizontal subsurface flow constructed wetland system: Effects of hydraulic loading rate. Ecol. Eng. 2010, 36, 527–535. [Google Scholar] [CrossRef]
- Ramsar Information Sheet, Version 2006–2008. Available online: http://ramsar.conanp.gob.mx/docs/sitios/FIR_RAMSAR/Jalisco/Lago%20de%20Chapala/LAGO_DE_CHAPALA.pdf (accessed on 13 March 2015).
- Rubel, F.; Kottek, M. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Z. 2010, 19, 135–141. [Google Scholar] [CrossRef]
- López-López, A.; Vallejo-Ramírez, R.; Méndez-Romero, D.C. Evaluation of a combined anaerobic and aerobic system for the treatment of slaughterhouse wastewater. Environ. Technol. 2010, 31, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Zurita, F.; de Anda, J.; Belmont, M.A. Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetland. Ecol. Eng. 2009, 35, 861–869. [Google Scholar] [CrossRef]
- Trejo-Téllez, L.I.; Ramírez-Martínez, M.; Gómez-Merino, F.C.; García-Albarado, J.C. Physical and chemical evaluation of volcanic rocks and its use for tulip production. Rev. Mex. Cienc. Agríc. 2013, 5, 863–876. [Google Scholar]
- Konnerup, D.; Koottatep, T.; Brix, H. Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia. Ecol. Eng. 2009, 35, 248–257. [Google Scholar]
- Lin, Y.F.; Jing, S.R.; Lee, D.Y.; Wang, T.W. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture 2002, 209, 169–184. [Google Scholar] [CrossRef]
- Kincanon, R.; McAnally, S. Enhancing commonly used model predictions for constructed wetland performance: As-built design considerations. Ecol. Model. 2004, 174, 309–322. [Google Scholar] [CrossRef]
- Zurita, F.; de Anda, J.; Belmont, M.A. Performance of laboratory-scale wetlands planted with tropical ornamental plants to treat domestic wastewater. Water Qual. Res. J. Can. 2006, 41, 410–417. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 1999. [Google Scholar]
- Statgraphics Centurion, version XVI; StatPoint Tecnologies, Inc.: Warrenton, VA, USA, 2011.
- Sedlak, R.I. Phosphorus and Nitrogen Removal from Municipal Wastewater: Principles and Practice, 2nd ed.; CRC Press, Lewis publishers: Boca Raton, FL, USA, 1991; p. 3. [Google Scholar]
- Wallace, S.D.; Knight, R.L. Small-Scale Constructed Wetland Treatment Systems: Feasibility, Design Criteria and O&M Requirements; Water Environment Research Foundation (WERF): Alexandria, VA, USA, 2006; pp. 4–21. [Google Scholar]
- Vymazal, J.; Kröpfelova, L. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow; Alloway, B.J., Trevors, J.T., Eds.; Springer: Berlin, Germany, 2008; Volume 14, pp. 40, 277–278. [Google Scholar]
- Vymazal, J. Review: Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol. Eng. 2005, 25, 478–490. [Google Scholar] [CrossRef]
- Maltais, G.; Maranger, R.; Brisson, J.; Chazarenc, F. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands. Water Res. 2009, 43, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, Z.; Mohseni-Bandpei, A. Nitrogen and phosphorus removal from wastewater by subsurface wetlands planted with Iris pseudacorus. Ecol. Eng. 2010, 36, 777–782. [Google Scholar] [CrossRef]
- Green, M.; Safray, I.; Agami, M. Constructed wetlands for river reclamation: experimental design, start-up and preliminary results. Bioresour. Technol. 1995, 55, 157–162. [Google Scholar] [CrossRef]
- Villegas, J.D.; Guerrero, J.; Castaño, J.M.; Paredes, D. Septic tank (ST)-Up flow anaerobic filter (UFAF)-subsurface flow constructed wetland (SSF-CW) systems aimed at wastewater treatment in small localities in Colombia. Rev. Tec. Fac. Ing. Univ. Zulia 2006, 29, 269–281. [Google Scholar]
- Ye, C.; Li, L.; Zhang, J.; Yang, Y. Study on ABR stage-constructed wetland integrated system in treatment of rural sewage. In Proceedings of the 2011 International Conference on Environmental Science and Engineering, Bali Island, Indonesia, 1–3 April 2011.
- El-Khateeb, M.A.; El-Gohary, F.A. Combining UASB technology and constructed wetland for domestic wastewater reclamation and reuse. Water Sci. Technol. Water Supply 2003, 3, 201–208. [Google Scholar]
- El Hamouri, B.; Nazih, J.; Lahjouj, J. Subsurface-horizontal flow constructed wetland for sewage treatment under Moroccan climate conditions. Desalination 2007, 215, 153–158. [Google Scholar] [CrossRef]
- Secretaría de economía, Norma Oficial Mexicana NOM-001-ECOL-1996. Available online: http://www.economia-noms.gob.mx/normas/noms/1997/001-ecol.pdf (accessed on 12 December 2014).
- El Hafiane, F.; El Hamouri, B. Anaerobic reactor/high rate pond combined technology for sewage treatment in the Mediterranean area. Water Sci. Technol. 2005, 52, 125–132. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merino-Solís, M.L.; Villegas, E.; De Anda, J.; López-López, A. The Effect of the Hydraulic Retention Time on the Performance of an Ecological Wastewater Treatment System: An Anaerobic Filter with a Constructed Wetland. Water 2015, 7, 1149-1163. https://doi.org/10.3390/w7031149
Merino-Solís ML, Villegas E, De Anda J, López-López A. The Effect of the Hydraulic Retention Time on the Performance of an Ecological Wastewater Treatment System: An Anaerobic Filter with a Constructed Wetland. Water. 2015; 7(3):1149-1163. https://doi.org/10.3390/w7031149
Chicago/Turabian StyleMerino-Solís, María L., Edgardo Villegas, José De Anda, and Alberto López-López. 2015. "The Effect of the Hydraulic Retention Time on the Performance of an Ecological Wastewater Treatment System: An Anaerobic Filter with a Constructed Wetland" Water 7, no. 3: 1149-1163. https://doi.org/10.3390/w7031149
APA StyleMerino-Solís, M. L., Villegas, E., De Anda, J., & López-López, A. (2015). The Effect of the Hydraulic Retention Time on the Performance of an Ecological Wastewater Treatment System: An Anaerobic Filter with a Constructed Wetland. Water, 7(3), 1149-1163. https://doi.org/10.3390/w7031149